y^2=519/20

Simple and best practice solution for y^2=519/20 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for y^2=519/20 equation:



y^2=519/20
We move all terms to the left:
y^2-(519/20)=0
We add all the numbers together, and all the variables
y^2-(+519/20)=0
We get rid of parentheses
y^2-519/20=0
We multiply all the terms by the denominator
y^2*20-519=0
Wy multiply elements
20y^2-519=0
a = 20; b = 0; c = -519;
Δ = b2-4ac
Δ = 02-4·20·(-519)
Δ = 41520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{41520}=\sqrt{16*2595}=\sqrt{16}*\sqrt{2595}=4\sqrt{2595}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{2595}}{2*20}=\frac{0-4\sqrt{2595}}{40} =-\frac{4\sqrt{2595}}{40} =-\frac{\sqrt{2595}}{10} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{2595}}{2*20}=\frac{0+4\sqrt{2595}}{40} =\frac{4\sqrt{2595}}{40} =\frac{\sqrt{2595}}{10} $

See similar equations:

| Y+2=(-0.4)(x-3) | | 18x^2-48x+35=0 | | 3(2x+1)=2x=11 | | 2(3x-4)^2+3=0 | | 1/2x+6=3-2x | | 5y/2-9=2y/3-2 | | 3y-18=4 | | 10x+5-7x=6x+15-5 | | 1.25x+x=90 | | 4(2x+4)=-8 | | 2x-3(x-5)=18 | | 4x2+7x+2=0 | | 3(4d+1)-9d=6(2-d | | 6x+4=2+6x | | 6x+4=2(1+3) | | 3(4d+1-9d=6(2-d | | 1x-30=255 | | 20/x+2=10 | | d^2=141/16 | | (2/3)y-(2/5)=5 | | 7|y-5=14 | | 5(4m-4)=40+5m | | 5x+1=-2(x+3) | | -21+4v=-(1+v) | | x2+12x+10=0. | | 5x+2(x+5)=9x-14 | | 2,5x+3-(0,7-0,3x)=5,6(0,5x+1)-3,3 | | 1/4×+1/8x+1/2x+6=× | | 0,15(3-2,5x)+0,75x=0,36(x-3) | | 4x-7*1/7=3 | | 3(2x-3)+7(2-x)=14-5(x-3) | | 4-(5+x)=-9 |

Equations solver categories